[DSSC, dye-sensitized solar cell, indoor photovoltaics, tandem, polymer electrolyte, co-sensitization]
最終更新:2026-01-10
本ページは、3報のみを対象に、色素増感太陽電池(DSSC)の最新トピックを一般向けに解説します。
DSSC(色素増感太陽電池)とは?(やさしく)
DSSCは、色素が光を吸収して電子を出し、その電子が酸化物半導体(多くはTiO₂)へ移動して電気を生む太陽電池です。
特に、室内光(LED照明など)でも相性がよい設計が可能で、透明・色つき・デザイン性などの強みがあります。
ざっくり動作(5ステップ)
- 色素が光を吸収して励起される
- 電子がTiO₂側へ注入される
- 電子が外部回路を流れて仕事をする
- 電解質が色素を元に戻す(再生)
- 対極で電解質が回収され、サイクルが回る
このファイルの3報で見える“研究の最前線”
- 室内光で25%超の高効率(タンデム・共増感)
- 固体/高分子電解質で、安定性と“扱いやすさ”を高める
- 新しい色素設計 + 共増感 + 助剤で、光の取り込みと電流を伸ばす
3本の論文を、一般向けに解説
1) 室内照明で25%超:タンデムDSSC(2025, Scientific Reports)
この研究は、ナフタレン骨格をもつ有機色素(BAM系列)を設計し、タンデム(2つのセルを組み合わせる)構成で性能を引き上げています。
– 太陽光条件(AM1.5G)で 12.13%、室内照明(25.85% (1000 lx))で高効率
– 連続動作300時間後も 95% after 300 h を維持(安定性の目安)
なにが効いた?(やさしく)
– “光を吸う範囲”を広げる色素設計 + 複数色素の組み合わせ(共増感)
– 上側・下側で役割分担し、光を“取りこぼさない”タンデム設計
2) 1つの電解質で「発電」と「蓄電」へ:イオン液体入り高分子電解質(2026, JSAMD)
この研究は、ポリエチレンオキシド(PEO)系の高分子電解質に、リン系イオン液体を混ぜてイオンの動きやすさ(導電性)を改善しています。
– 室温での導電率:およそ 7.17 × 10^-4 S/cm(最適組成)
– 組成の例:20 wt% ionic liquid
– 特色:同じ電解質を DSSC + EDLC (supercapacitor) に使う“二刀流”の提案
なにが嬉しい?(やさしく)
– 液漏れしにくい方向(固体/準固体化)で、安全性・長期安定性に期待
– 発電デバイスと蓄電デバイスの材料共通化は、実装の発想として面白い
3) 光を取り込む工夫:トリアゾール架橋色素 + 共増感 + 助剤(2025, Journal of Saudi Chemical Society)
この研究は、新規の有機色素(MSA-1/2)を合成し、標準色素N719と共増感(co-sensitization)して性能を評価しています。
– 共増感で 7.65% (MSA-1 + N719) / 7.53% (MSA-2 + N719)
– さらに助剤(co-adsorbent)導入で 9.50% with HC-Acid / 8.96% with HC-Acid へ改善
– 例:短絡電流密度が 16.93 → 17.98 mA/cm² (MSA-1 + N719) のように増加
なにが効いた?(やさしく)
– 色素の“光の吸い方”を分子設計で最適化
– 助剤で、TiO₂表面の混み合い・逆反応(再結合)を抑えて、電流を取りやすくする
用語ミニ解説
- タンデムDSSC:2つのセルを積層/組み合わせ、吸収できる光の範囲を広げて効率を上げる考え方。
- 共増感(co-sensitization):複数の色素を併用し、吸収スペクトルの穴を埋める方法。
- 電解質(electrolyte):DSSC内部でイオンが動き、色素の再生などを担う材料。液体・ゲル・高分子などがある。
まとめ(1行)
DSSCは、室内光での高効率化、固体化による実装性、色素/界面設計による性能向上が同時に進んでいます。
参考文献(添付ファイル内の3報のみ)
- Elmorsy, MR, Mohammed, SM, Mohamed, BA, Moustafa, AH, Badawy, SA (2025). High-efficiency tandem DSSCs based on tailored naphthalene sensitizers for indoor DSSC efficiency above 25%. SCIENTIFIC REPORTS. SCIENTIFIC REPORTS, 2025, 15(1), 44135. DOI: 10.1038/s41598-025-30854-0 (https://doi.org/10.1038/s41598-025-30854-0)
- Rawat, S, Singh, RC, Michalska, M, Savilov, S, Diantoro, M, Singh, PK (2026). Multifunctional phosphonium-based ionic liquid embedded polymer electrolyte for dual energy conversion and storage. JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES. JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2026, 11(1), 101084. DOI: 10.1016/j.jsamd.2025.101084 (https://doi.org/10.1016/j.jsamd.2025.101084)
- Abu-Melha, S (2025). Enhanced light harvesting in dye-sensitized solar cells via Triazole π-bridged organic dyes: insights into co-sensitization and efficiency optimization. JOURNAL OF SAUDI CHEMICAL SOCIETY. JOURNAL OF SAUDI CHEMICAL SOCIETY, 2025, 29(6), 47. DOI: 10.1007/s44442-025-00048-4 (https://doi.org/10.1007/s44442-025-00048-4)
English Version
DSSC Frontier (Dec 2025–Mar 2026): Indoor High Efficiency, Polymer Electrolytes, and Dye Engineering (3 Papers)
Last updated: 2026-01-10
This page is a public-friendly overview based only on the three papers included in the attached Web of Science export.
What is a DSSC (dye-sensitized solar cell)?
A DSSC generates electricity when a dye absorbs light and injects an electron into a semiconductor (often TiO₂). Because dye absorption can be engineered, DSSCs can be particularly attractive for ambient/indoor light and designable modules (color/partial transparency).
How it works (5 quick steps)
- The dye absorbs light (excitation).
- An electron is injected into TiO₂.
- The electron flows through the external circuit.
- The electrolyte regenerates the dye.
- The counter electrode closes the ionic cycle.
What these three papers collectively show
- Very high indoor efficiency enabled by tandem + co-sensitization.
- Polymer/solid-like electrolytes aiming at stability and practical handling.
- New dye design + co-sensitization + surface additives to boost light harvesting and current.
Paper-by-paper highlights
1) >25% under indoor light: tandem DSSCs (2025, Scientific Reports)
Tailored organic dyes (BAM series) are combined in a tandem-like configuration to broaden harvesting and improve performance.
– Efficiency: 12.13% under AM1.5G; 25.85% (1000 lx) under indoor illumination
– Stability: 95% after 300 h after 300 h continuous operation (reported metric)
Why it matters: pairing dyes and splitting roles between top/bottom photoanodes can reduce “lost photons” and push indoor performance.
2) One electrolyte for energy conversion and storage: ionic‑liquid embedded polymer electrolyte (2026, JSAMD)
A phosphonium ionic liquid is incorporated into a PEO-based polymer electrolyte to enhance ionic transport and stability.
– Ionic conductivity (room temperature): ~7.17 × 10^-4 S/cm (optimized)
– Example composition: 20 wt% ionic liquid
– Demonstration: the same electrolyte works in DSSC + EDLC (supercapacitor)
Why it matters: polymer/solid-like electrolytes can mitigate leakage and improve robustness; cross-device material reuse is a practical design idea.
3) Better light harvesting via triazole π‑bridged dyes + co‑sensitization + co‑adsorbents (2025, JSCS)
Two triazole π‑bridged organic dyes (MSA‑1/2) are evaluated in co‑sensitization with benchmark N719, and further improved using a co‑adsorbent additive.
– Co‑sensitized PCE: 7.65% (MSA-1 + N719) / 7.53% (MSA-2 + N719)
– With co‑adsorbent: 9.50% with HC-Acid / 8.96% with HC-Acid
– Example current gain: 16.93 → 17.98 mA/cm² (MSA-1 + N719)
Why it matters: combining molecular design and surface/interface control can translate into higher current and overall efficiency.
Mini glossary
- Tandem DSSC: combining two sub-cells to harvest a wider spectral range.
- Co-sensitization: using multiple dyes to fill spectral gaps.
- Electrolyte: ionic medium that regenerates the dye and transports charge internally (liquid/gel/polymer).
References (only the 3 papers in the attached file)
- Elmorsy, MR, Mohammed, SM, Mohamed, BA, Moustafa, AH, Badawy, SA (2025). High-efficiency tandem DSSCs based on tailored naphthalene sensitizers for indoor DSSC efficiency above 25%. SCIENTIFIC REPORTS. SCIENTIFIC REPORTS, 2025, 15(1), 44135. DOI: 10.1038/s41598-025-30854-0 (https://doi.org/10.1038/s41598-025-30854-0)
- Rawat, S, Singh, RC, Michalska, M, Savilov, S, Diantoro, M, Singh, PK (2026). Multifunctional phosphonium-based ionic liquid embedded polymer electrolyte for dual energy conversion and storage. JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES. JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2026, 11(1), 101084. DOI: 10.1016/j.jsamd.2025.101084 (https://doi.org/10.1016/j.jsamd.2025.101084)
- Abu-Melha, S (2025). Enhanced light harvesting in dye-sensitized solar cells via Triazole π-bridged organic dyes: insights into co-sensitization and efficiency optimization. JOURNAL OF SAUDI CHEMICAL SOCIETY. JOURNAL OF SAUDI CHEMICAL SOCIETY, 2025, 29(6), 47. DOI: 10.1007/s44442-025-00048-4 (https://doi.org/10.1007/s44442-025-00048-4)
