| Publication Year | Author | Title | Publication Title | DOI | Url | Pages | Issue | Volume |
|---|---|---|---|---|---|---|---|---|
| 2018 | Jou, Jwo-Huei; Sahoo, Snehasis; Dubey, Deepak Kumar; Yadav, Rohit Ashok Kumar; Swayamprabha, Sujith Sudheendran; Chavhan, Sudam Dhudaku | Molecule-based monochromatic and polychromatic OLEDs with wet-process feasibility | Journal of Materials Chemistry C | 10.1039/C8TC04203A | https://pubs.rsc.org/en/content/articlelanding/2018/tc/c8tc04203a | 11492-11518 | 43 | 6 |
| 2008 | Lai, S. L.; Chan, M. Y.; Tong, Q. X.; Fung, M. K.; Wang, P. F.; Lee, C. S.; Lee, S. T. | Approaches for achieving highly efficient exciplex-based organic light-emitting devices | Applied Physics Letters | 10.1063/1.2993326 | https://doi.org/10.1063/1.2993326 | 143301 | 14 | 93 |
| 2010 | Yu, Tianzhi; Zhang, Peng; Zhao, Yuling; Zhang, Hui; Meng, Jing; Fan, Duowang; Chen, Lili; Qiu, Yongqing | Synthesis, crystal structure and photo- and electro-luminescence of the coumarin derivatives with benzotriazole moiety | Organic Electronics | 10.1016/j.orgel.2009.09.023 | https://www.sciencedirect.com/science/article/pii/S1566119909002845 | 41-49 | 1 | 11 |
| 2007 | Su, W. M.; Li, W. L.; Xin, Q.; Su, Z. S.; Chu, B.; Bi, D. F.; He, H.; Niu, J. H. | Effect of acceptor on efficiencies of exciplex-type organic light emitting diodes | Applied Physics Letters | 10.1063/1.2762298 | https://doi.org/10.1063/1.2762298 | 43508 | 4 | 91 |
| 2012 | Zhang, Hui; Chai, Haifang; Yu, Tianzhi; Zhao, Yuling; Fan, Duowang | High-Efficiency Blue Electroluminescence Based on Coumarin Derivative 3-(4-(anthracen-10-yl)phenyl)-benzo[5,6]coumarin | Journal of Fluorescence | 10.1007/s10895-012-1088-3 | https://doi.org/10.1007/s10895-012-1088-3 | 1509-1512 | 6 | 22 |
| 2007 | Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun | Combinatorial fabrication and screening of organic light-emitting device arrays | Applied Surface Science | 10.1016/j.apsusc.2007.04.090 | https://www.sciencedirect.com/science/article/pii/S0169433207010173 | 749-756 | 3 | 254 |
| 1997 | Shirota, Yasuhiko | Organic light-emitting diodes using novel charge-transport materials | Organic Light-Emitting Materials and Devices | 10.1117/12.279340 | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3148/0000/Organic-light-emitting-diodes-using-novel-charge-transport-materials/10.1117/12.279340.full | 186-193 | 3148 | |
| 2022 | Zhang, Guangye; Xie, Chen; You, Peng; Li, Shunpu | Organic Light-Emitting Diodes (OLEDs) | Introduction to Organic Electronic Devices | https://doi.org/10.1007/978-981-19-6091-8_3 | 65-106 | |||
| 2004 | Ishihara, Mari; Okumoto, Kenji; Shirota, Yasuhiko | Effects of the method of preparation of organic thin films and chemical doping on charge injection from electrodes | Organic Light-Emitting Materials and Devices VII | 10.1117/12.507976 | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5214/0000/Effects-of-the-method-of-preparation-of-organic-thin-films/10.1117/12.507976.full | 133-140 | 5214 | |
| 2024 | Liu, Jikang | A Review on the Application of Organic Materials Used in OLED Display | https://papers.ssrn.com/abstract=4923192 | |||||
| 2008 | Yu, Tianzhi; Zhang, Peng; Zhao, Yuling; Zhang, Hui; Meng, Jing; Fan, Duowang; Dong, Wenkui | Photoluminescence and electroluminescence of a tripodal compound containing 7-diethylamino-coumarin moiety | Journal of Physics D: Applied Physics | 10.1088/0022-3727/41/23/235406 | https://dx.doi.org/10.1088/0022-3727/41/23/235406 | 235406 | 23 | 41 |
| 2009 | Yu, Tianzhi; Zhang, Peng; Zhao, Yuling; Zhang, Hui; Meng, Jing; Fan, Duowang | Synthesis, characterization and high-efficiency blue electroluminescence based on coumarin derivatives of 7-diethylamino-coumarin-3-carboxamide | Organic Electronics | 10.1016/j.orgel.2009.02.026 | https://www.sciencedirect.com/science/article/pii/S1566119909000524 | 653-660 | 4 | 10 |
| 2010 | Zhang, Hui; Yu, Tianzhi; Zhao, Yuling; Fan, Duowang; Xia, Yangjun; Zhang, Peng | Synthesis, crystal structure, photo- and electro-luminescence of 3-(4-(anthracen-10-yl)phenyl)-7-(N,N′-diethylamino)coumarin | Synthetic Metals | 10.1016/j.synthmet.2010.05.034 | https://www.sciencedirect.com/science/article/pii/S0379677910002274 | 1642-1647 | 15 | 160 |
| 2023 | Zeng, Xin-Yi; Tang, Yan-Qing; Cai, Xiao-Yi; Tang, Jian-Xin; Li, Yan-Qing | Solution-processed OLEDs for printing displays | Materials Chemistry Frontiers | 10.1039/D2QM01241C | https://pubs.rsc.org/en/content/articlelanding/2023/qm/d2qm01241c | 1166-1196 | 7 | 7 |
有機EL(OLED)デバイスの高性能化において、キャリア輸送材料の選定は極めて重要である。本研究分野では、**2-TNATA(4,4′,4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine)およびPBD(2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole)**という二つの代表的な機能性分子が広く利用されている。2-TNATAはその高いホール移動度と適切なHOMO準位により、アノードと発光層との間のホール輸送を効果的に担い、デバイス全体のキャリアバランスを整える。一方、PBDは高い電子移動度と広いバンドギャップを有し、電子輸送とホールブロックの役割を果たす。
これらの材料を用いたOLEDは、以下のような積層構造で製作されることが多い:ITOアノード上に2-TNATAを蒸着し、次にホール輸送層(例:NPB)、発光層(例:Alq₃あるいはAlq₃:Ir(ppy)₃ブレンド)、電子輸送層としてPBD、そして金属カソードを順次積層する。成膜には真空蒸着法が用いられ、各層の厚みや順序は発光効率および安定性に大きく影響する。
これらの構成を活用した研究ではさまざまな成果が報告されている。S. Tokitoらは、2-TNATAとPBDを組み込んだデバイスにおいて、外部量子効率が4%以上に達することを示した。この高効率は、両材料が形成するキャリアバランスの良い発光領域に起因しているとされる(Tokito et al., Appl. Phys. Lett., 1997, 70, 1929)。また、Y. Hamadaらの研究では、PBDの導入により電子とホールの再結合領域が発光層中央に安定して形成され、結果としてデバイス寿命および動作安定性が大幅に改善されたことが報告されている(Hamada et al., Appl. Phys. Lett., 1996, 68, 2606)。
さらに、J. Kidoらは、PBDを含む多層構造を用いることで、白色OLEDの色純度や安定性を向上させることにも成功している(Kido et al., Science, 1995, 267, 1332–1334)。これらの成果は、2-TNATAとPBDの組み合わせが、発光効率、色純度、寿命の全てにおいて高性能OLEDを実現するための有力な材料戦略であることを示している。
In the development of high-performance organic light-emitting diodes (OLEDs), the choice of charge-transporting materials plays a crucial role. Among them, 2-TNATA (4,4′,4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) and PBD (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) have been widely adopted due to their respective hole and electron transport capabilities. 2-TNATA exhibits high hole mobility and an appropriate HOMO level, enabling efficient hole injection and transport from the anode to the emissive layer, while PBD serves as an effective electron transport material and hole-blocking layer due to its high electron mobility and wide bandgap.
OLED devices incorporating these materials are typically fabricated with multilayer structures such as: ITO / 2-TNATA / hole-transport layer (e.g., NPB) / emitting layer (e.g., Alq₃ or Alq₃:Ir(ppy)₃) / PBD / cathode. These layers are deposited via vacuum thermal evaporation, and the thickness and arrangement of each layer significantly affect device performance.
Several studies have demonstrated notable achievements using this architecture. For instance, Tokito et al. reported that OLEDs employing both 2-TNATA and PBD achieved external quantum efficiencies exceeding 4%, attributed to balanced charge recombination within the emissive zone (Applied Physics Letters, 1997, 70, 1929). Additionally, Hamada et al. found that incorporating PBD shifted the recombination zone toward the center of the emitting layer, resulting in improved device lifetime and operational stability (Applied Physics Letters, 1996, 68, 2606). Kido et al. further demonstrated that multilayer white OLEDs utilizing PBD achieved enhanced color purity and stability, highlighting the importance of PBD in multicomponent emission systems (Science, 1995, 267, 1332–1334).
These findings collectively underscore the effectiveness of combining 2-TNATA and PBD in OLEDs to simultaneously enhance efficiency, lifetime, and color performance, making them highly valuable materials in next-generation organic optoelectronic devices.



