Diarylethene Organic LED Papers List
| Authors | Article Title | Source Title | Author Keywords | Keywords Plus | Abstract | Publication Year | Volume | Issue | Part Number | Start Page | End Page | Article Number | DOI |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ligorio, G; Cotella, GF; Bonasera, A; Morales, NZ; Carnicella, G; Kobin, B; Wang, QK; Koch, N; Hecht, S; List-Kratochvil, EJW; Cacialli, F | Modulating the luminance of organic light-emitting diodes via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode | NANOSCALE | THIN-FILM-TRANSISTOR; WORK FUNCTION; CHARGE INJECTION; ZINC-OXIDE; PERFORMANCE; RESISTANCE; DEVICES; SURFACE | Self-assembled monolayers (SAMs) deposited on bottom electrodes are commonly used to tune charge carrier injection or blocking in optoelectronic devices. Beside the enhancement of device performance, the fabrication of multifunctional devices in which the output can be modulated by multiple external stimuli remains a challenging target. In this work, we report the functionalization of an indium tin oxide (ITO) electrode with a SAM of a diarylethene derivative designed for optically control the electronic properties. Following the demonstration of dense SAM formation and its photochromic activity, as a proof-of-principle, an organic light-emitting diode (OLED) embedding the light-responsive SAM-covered electrode was fabricated and characterized. Optically addressing the two-terminal device by irradiation with ultraviolet light doubles the electroluminescence. The original value can be restored reversibly by irradiation with visible light. This expanded functionality is based on the photoinduced modulation of the electronic structure of the diarylethene isomers, which impact the charge carriers' confinement within the emissive layer. This approach could be successfully exploited in the field of opto-communication technology, for example to fabricate opto-electronic logic circuits. | 2020 | 12 | 9 | 5444 | 5451 | 10.1039/d0nr00724b | |||
| Qian, Y; Xu, XX; Li, WW; Wang, JY; Wei, BY; Wei, Q; Yan, XH; Hu, W; Lu, YQ; Xie, LH; Zhang, XW; Huang, W | Photo-induced storage and mask-free arbitrary micro-patterning in solution-processable and simple-structured photochromic organic light-emitting diodes | ORGANIC ELECTRONICS | Photochromophores; Mask-free micro-photopatterning; Rewritable optical storage; Photochromic light-emitting devices | DIARYLETHENE MOLECULES; MEMORY; TRANSISTORS; ELECTRONICS; TRANSPORT; CRYSTALS | A photochromic diarylethene-based compound BMTA, which undergoes a reversible conversion between ring-open and closed isomers by alternating UV and visible light illumination, has been designed and synthesized. By utilizing a mask-free Digital Micro-mirror Device (DMD) micro-lithography system, arbitrary micro-photopatterning in polymer films doped with BMTA can be easily obtained with UV light writing. This recorded photo information can easily be erased by further visible light irradiation. The reversible and rewritable optical storage is based on photo-switched intermolecular energy transfer between the emissive host and the ring-closed isomer c-BMTA. Furthermore, the solution-processable organic light-emitting devices (OLEDs) with the single emitting layer doped with BMTA were fabricated, which exhibit rewritable memory behavior with light control. The luminescence and current density decrease significantly upon UV light irradiation, and recover by further visible light illumination. This is because the hole trapping is much facilitated in closed-ring isomer based devices, due to elevated HOMO level of c-BMTA. Without incorporating any cross-linking layer, the maximum luminescence and current density on/off ratios of this solution-processable and simple-structured device are 1.9 x 10(3) and 1.4 x 10(2), respectively. Arbitrary micro-photolithography of OLEDs by DMD system has also been demonstrated, which shows great prospects in large-scale production of high resolution OLED displays. (C) 2015 Published by Elsevier B.V. | 2015 | 26 | 476 | 480 | 10.1016/j.orgel.2015.07.059 | |||
| Hajji, I; Petkovic, M; Alraih, AM; Hajri, AK; Zghab, I; Alnakhli, ZH; Aloui, F | Synthesis, characterization, photophysical and electrochemical properties of new thiadiazole-based olefins for OLED applications | JOURNAL OF MOLECULAR STRUCTURE | N -Heteroaromatic compounds; Organic synthesis; Fluorophores; Photophysical properties; Materials science | MOLECULAR-ORBITAL METHODS; SOLID-STATE FLUORESCENCE; PHOTOCHROMIC DITHIENYLETHENE; OPTOELECTRONIC PROPERTIES; OPTICAL-PROPERTIES; CHAIN-LENGTH; BASIS-SETS; DERIVATIVES; DIARYLETHENE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE) | A three-step synthetic approach was employed to synthesize new thiadiazole-based olefins integrating customized functional groups. This methodology consistently delivered satisfactory overall yields ranging from 44 % to 57 %. Comprehensive structural characterization of the synthesized compounds was conducted using FT-IR and NMR (H-1, C-13) spectroscopic techniques. The resulting thiadiazole-based olefins exhibited notable UV absorption (lambda max = 309-382 nm). Among these, one compound displayed a green emission, while others exhibited red-orange emission, indicating a Stokes shift ranging from 5423 to 6835 cm(-1). Their electrochemical behavior was analyzed, revealing an irreversible redox-active response and experimentally determined HOMO and LUMO energy levels indicated an electrochemical gap of <2.32 eV. Our comprehensive investigation, integrating experimental and theoretical methodologies with TD-DFT calculations, aimed to deepen the understanding of the photophysical properties of the target compounds. This comparative analysis between computational results and experimental data highlights the potential of these N-heteroaromatic compounds as organic small-molecule fluorophores for applications in electroluminescent devices. | 2025 | 1321 | 4 | 140104 | 10.1016/j.molstruc.2024.140104 |
フォトクロミック分子で“光アドレス”可能なOLEDへ
概要
日常光(UV/可視)で発光や電荷注入を切り替えられるフォトクロミック分子×OLEDの研究が進展しています。ジアリールエテン(DAE)を自己組織化単分子膜(SAM)としてITOに固定し、光で界面の電子構造を反転させてエレクトロルミネッセンス(EL)を約2倍に変調する手法、DAE誘導体BMTAを発光層にドープしてマスク不要のDMD微細パターニングと消去可能な光記録を実現する手法、さらに新規チアジアゾール系オレフィンを合成し広いストークスシフトと低ギャップ(<2.32 eV)を示す発光小分子を提示する報告が含まれます。これらは光通信・ロジック、マイクロディスプレイ、省電力表示の基盤となります。
ここがポイント
- 光で界面チューニング:DAE-SAMでITOの注入特性を切替え、UV照射でELが~2×増加、可視照射で可逆復帰。
- リライト型表示:BMTAドープ膜をDMDでマスクレス微細パターニング→可視光で消去・繰り返し。
- デバイスON/OFF指標:BMTAデバイスの輝度ON/OFF=1.9×103、電流密度ON/OFF=1.4×102。
- 新規発光骨格:チアジアゾール系オレフィンは309–382 nm吸収、緑〜赤橙発光、ΔEelec < 2.32 eV。
- 用途指向:光アドレス可能なOLEDロジック、データ暗号化、超高精細マイクロディスプレイへ展開。
論文別ハイライト
- DAE-SAMでELを光制御(Nanoscale):ITOにDAEのSAMを形成し、開閉環異性化で電極の仕事関数・障壁を可逆変調。UVでEL倍増、可視で元に戻る。2端子素子を光でアドレス可能に。
- BMTAでリライトOLED&微細化(Organic Electronics):UVで閉環(c-BMTA)→ホールトラップが増し発光/電流が低下、可視で開環して回復。DMDにより任意のマイクロパターンを書込み/消去。輝度1.9×103、電流1.4×102のON/OFF。
- チアジアゾール系新規フルオロフォア(J. Mol. Struct.):3工程合成で新規オレフィン群を取得。大ストークスシフト(5423–6835 cm−1)、緑/赤橙発光、不可逆レドックス特性と小さな電気化学ギャップを実験/TD-DFTで整合。
用語ミニ解説
- ジアリールエテン(DAE):UV/可視で開環↔閉環を可逆に切替えるフォトクロミック分子。界面の仕事関数やFRET、発光を光で制御。
- SAM(自己組織化単分子膜):基板上に自己整列した単分子層。電子注入障壁や表面エネルギーを精密に調整。
- DMDマイクロリソグラフィ:多数のマイクロミラーで光をオン/オフし、マスクなしで微細パターンを書く直描法。
- HOMO/LUMO・仕事関数:電荷注入の成否を左右する指標。SAMや光異性化で整合を最適化。
想定アプリケーション
- 光通信・光ロジック向けの光アドレス型OLED
- マイクロディスプレイ/マイクロLED代替の高解像度パターニング
- リライト可能な情報表示・暗号化タグ
- 低電圧・高コントラストな省電力ディスプレイ
関連キーワード
#Diarylethene #Photochromism #OLED #SAM #ITO #Micropatterning #DMD #WorkFunction #ChargeInjection #Fluorophores
Photochromic Molecules for Light-Addressable OLEDs
Overview
Recent studies demonstrate light-addressable OLEDs by integrating photochromic molecules. A diarylethene (DAE) self-assembled monolayer (SAM) on ITO optically toggles interfacial energetics to double the electroluminescence under UV and reversibly restore it with visible light. A DAE derivative BMTA enables mask-free DMD micro-patterning and rewritable optical storage in solution-processed OLEDs. In parallel, newly synthesized thiadiazole-based olefins show broad Stokes shifts and small electrochemical gaps (<2.32 eV), expanding the library of efficient emitters.
Why it matters / Key points
- Optical interfacial gating: DAE-SAM reversibly tunes charge-injection barriers at ITO, yielding ~2× EL under UV and recovery under visible light.
- Rewritable displays: BMTA-doped films allow mask-free micro-patterning and erasable optical storage.
- Robust device contrast: BMTA-OLEDs show luminance ON/OFF = 1.9 × 103 and current density ON/OFF = 1.4 × 102.
- New emitters: Thiadiazole olefins (λabs 309–382 nm) emit green to red-orange with ΔEelec < 2.32 eV.
Highlights by study
- DAE-SAM-addressed OLED (Nanoscale): Dense DAE SAM on ITO; photoisomerization modulates frontier levels/work function, enabling UV-induced EL doubling and visible-light reset in a two-terminal device.
- BMTA-based rewritable OLEDs (Organic Electronics): UV drives ring-closure (c-BMTA) to enhance hole trapping and suppress EL/current; visible light reopens the ring and restores signals. DMD lithography writes/erases arbitrary micro-patterns; strong ON/OFF metrics above.
- Thiadiazole-olefin fluorophores (J. Mol. Struct.): Three-step synthesis; large Stokes shifts (5423–6835 cm−1), green/red-orange emission, irreversible redox, and small gaps validated by TD-DFT—promising small-molecule emitters.
Mini-glossary
- Diarylethene (DAE): Reversible UV/visible ring-opening/closure controlling energy levels and emission.
- SAM: Self-assembled monolayer that precisely tunes interfacial energetics and surface energy.
- DMD microlithography: Mask-free patterning using arrays of tilting micro-mirrors.
- HOMO/LUMO & work function: Determine charge-injection barriers; optically tuned via SAM/isomerization.
Potential applications
- Light-addressable OLED logic and optical communication
- High-resolution micro-displays via mask-free photopatterning
- Rewritable/erasable visual encryption and data storage
- Low-voltage, high-contrast energy-saving displays
Suggested tags
#Diarylethene #Photochromism #OLED #SAM #ITO #Micropatterning #DMD #WorkFunction #ChargeInjection #Fluorophores
参考文献 / References
- Ligorio, G.; Cotella, G.; Bonasera, A.; Zorn Morales, N.; Carnicella, G.; Kobin, B.; et al. Modulating the luminance of organic light-emitting diodes via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode. Nanoscale 2020, 12(9), 5444–5451. DOI: https://doi.org/10.1039/D0NR00724B
- Qian, Y.; Xu, X.; Li, W.; Wang, J.; Wei, B.; Wei, Q.; et al. Photo-induced storage and mask-free arbitrary micro-patterning in solution-processable and simple-structured photochromic organic light-emitting diodes. Organic Electronics 2015, 26, 476–480. DOI: https://doi.org/10.1016/j.orgel.2015.07.059
- Hajji, I.; Petković, M.; Alraih, A. M.; Aloui, F.; et al. Synthesis, characterization, photophysical and electrochemical properties of new thiadiazole-based olefins for OLED applications. Journal of Molecular Structure 2025, 1321, 140104. DOI: https://doi.org/10.1016/j.molstruc.2024.140104
powered by ChatGPT

