Dye-Sensitize Solar Cell SQ2
| Publication Year | Author | Title | Publication Title | DOI | Url | Pages | Issue | Volume |
|---|---|---|---|---|---|---|---|---|
| 2025 | Hosoda, Norika; Komatsu, Hiroaki; Ikuno, Takashi | Dye-sensitized solar cell-based optoelectronic artificial synaptic devices capable of wavelength recognition for physical reservoir computing | Japanese Journal of Applied Physics | 10.35848/1347-4065/adb820 | https://dx.doi.org/10.35848/1347-4065/adb820 | 037001 | 3 | 64 |
| 2018 | Lee, Horim; Kim, Jihun; Kim, Dong Young; Seo, Yongsok | Co-sensitization of metal free organic dyes in flexible dye sensitized solar cells | Organic Electronics | 10.1016/j.orgel.2017.10.003 | https://www.sciencedirect.com/science/article/pii/S1566119917304937 | 103-109 | 52 | |
| 2017 | Patwari, Jayita; Sardar, Samim; Liu, Bo; Lemmens, Peter; Pal, Samir Kumar | Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer | Beilstein Journal of Nanotechnology | 10.3762/bjnano.8.171 | https://www.beilstein-journals.org/bjnano/articles/8/171 | 1705-1713 | 1 | 8 |
| 2017 | Bonomo, Matteo; Saccone, Davide; Magistris, Claudio; Di Carlo, Aldo; Barolo, Claudia; Dini, Danilo | Effect of Alkyl Chain Length on the Sensitizing Action of Substituted Non-Symmetric Squaraines for p-Type Dye-Sensitized Solar Cells | ChemElectroChem | 10.1002/celc.201700191 | https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201700191 | 2385-2397 | 9 | 4 |
| 2017 | Knyazeva, Ekaterina A.; Wu, Wenjun; Chmovzh, Timofey N.; Robertson, Neil; Woollins, J. Derek; Rakitin, Oleg A. | Dye-sensitized solar cells: Investigation of D-A-π-A organic sensitizers based on [1,2,5]selenadiazolo[3,4-c]pyridine | Solar Energy | 10.1016/j.solener.2017.01.016 | https://www.sciencedirect.com/science/article/pii/S0038092X17300257 | 134-143 | 144 | |
| 2015 | Thalluri, Gopala Krishna V. V.; Henrist, Catherine; Spronck, Gilles; Vertruyen, Bénédicte; Dewalque, Jennifer; Colson, Pierre; Habraken, Serge; Cloots, Rudi | Elucidating the opto-electrical properties of solid and hollow titania scattering layers for improvement of dye-sensitized solar cells | Thin Solid Films | 10.1016/j.tsf.2015.10.008 | https://www.sciencedirect.com/science/article/pii/S0040609015009815 | 115-119 | 594 | |
| 2018 | Younas, M.; Gondal, M.a.; Mehmood, U.; Harrabi, K.; Yamani, Z.h.; Al-Sulaiman, F.a. | Performance enhancement of dye-sensitized solar cells via cosensitization of ruthenizer Z907 and organic sensitizer SQ2 | International Journal of Energy Research | 10.1002/er.4154 | https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4154 | 3957-3965 | 12 | 42 |
| 2016 | Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W. | Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture | Scientific Reports | 10.1038/srep30077 | https://www.nature.com/articles/srep30077 | 30077 | 1 | 6 |
| 2015 | Rudolph, Melanie; Yoshida, Tsukasa; Miura, Hidetoshi; Schlettwein, Derck | Improvement of Light Harvesting by Addition of a Long-Wavelength Absorber in Dye-Sensitized Solar Cells Based on ZnO and Indoline Dyes | The Journal of Physical Chemistry C | 10.1021/jp511122u | https://doi.org/10.1021/jp511122u | 1298-1311 | 3 | 119 |
| 2017 | Malzner, Frederik J.; Willgert, Markus; Constable, Edwin C.; Housecroft, Catherine E. | The way to panchromatic copper(I)-based dye-sensitized solar cells: co-sensitization with the organic dye SQ2 | Journal of Materials Chemistry A | 10.1039/C7TA02575K | https://pubs.rsc.org/en/content/articlelanding/2017/ta/c7ta02575k | 13717-13729 | 26 | 5 |
| 2021 | Tanaka, Ellie; Mikhailov, Maxim S.; Gudim, Nikita S.; Knyazeva, Ekaterina A.; Mikhalchenko, Ludmila V.; Robertson, Neil; Rakitin, Oleg A. | Structural features of indoline donors in D–A-π-A type organic sensitizers for dye-sensitized solar cells | Molecular Systems Design & Engineering | 10.1039/D1ME00054C | https://pubs.rsc.org/en/content/articlelanding/2021/me/d1me00054c | 730-738 | 9 | 6 |
| 2015 | Tsai, Hui-Hsu Gavin; Tan, Chun-Jui; Tseng, Wen-Hsin | Electron Transfer of Squaraine-Derived Dyes Adsorbed on TiO2 Clusters in Dye-Sensitized Solar Cells: A Density Functional Theory Investigation | The Journal of Physical Chemistry C | 10.1021/jp508034f | https://doi.org/10.1021/jp508034f | 4431-4443 | 9 | 119 |
| 2017 | Furnell, Leo; Holliman, Peter J.; Connell, Arthur; Jones, Eurig W.; Hobbs, Robert; Kershaw, Christopher P.; Anthony, Rosie; Searle, Justin; Watson, Trystan; McGettrick, James | Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells | Sustainable Energy & Fuels | 10.1039/C7SE00015D | https://pubs.rsc.org/en/content/articlelanding/2017/se/c7se00015d | 362-370 | 2 | 1 |
| 2025 | Ejima, Ryuhei; Ono, Keitaro; Hara, Michihiro | Fabrication and characterization of co-sensitized dye solar cells incorporating cyclodextrin functional layers with energy transfer from spiropyran derivatives to SQ2 dye | Journal of Photochemistry and Photobiology A: Chemistry | 10.1016/j.jphotochem.2025.116531 | https://www.sciencedirect.com/science/article/pii/S1010603025002710 | 116531 | 469 | |
| 2024 | Hara, Michihiro; Ejima, Ryuhei | Fabrication and Characterization of Co-Sensitized Dye Solar Cells Using Energy Transfer from Spiropyran Derivatives to SQ2 Dye | Molecules | 10.3390/molecules29204896 | https://www.mdpi.com/1420-3049/29/20/4896 | 4896 | 20 | 29 |
| 2016 | Fang, Manman; Li, Huiyang; Li, Qianqian; Li, Zhen | Co-sensitization of “H”-type dyes with planar squaraine dyes for efficient dye-sensitized solar cells | RSC Advances | 10.1039/C6RA03694E | https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra03694e | 40750-40759 | 47 | 6 |
| 2018 | Haishima, Yuki; Kubota, Yasuhiro; Manseki, Kazuhiro; Jin, Jiye; Sawada, Yoshiharu; Inuzuka, Toshiyasu; Funabiki, Kazumasa; Matsui, Masaki | Wide-Range Near-Infrared Sensitizing 1H-Benzo[c,d]indol-2-ylidene-Based Squaraine Dyes for Dye-Sensitized Solar Cells | The Journal of Organic Chemistry | 10.1021/acs.joc.8b00070 | https://doi.org/10.1021/acs.joc.8b00070 | 4389-4401 | 8 | 83 |
| 2018 | Zani, Lorenzo; Dagar, Janardan; Lai, Sarah; Centi, Sonia; Ratto, Fulvio; Pini, Roberto; Calamante, Massimo; Mordini, Alessandro; Reginato, Gianna; Mazzoni, Marina | Studies on the efficiency enhancement of co-sensitized, transparent DSSCs by employment of core-shell-shell gold nanorods | Inorganica Chimica Acta | 10.1016/j.ica.2017.06.041 | https://www.sciencedirect.com/science/article/pii/S0020169317306473 | 407-415 | 470 | |
| 2015 | Sheehan, Stephen; Naponiello, Gaia; Odobel, Fabrice; Dowling, Denis P.; Di Carlo, Aldo; Dini, Danilo | Comparison of the photoelectrochemical properties of RDS NiO thin films for p-type DSCs with different organic and organometallic dye-sensitizers and evidence of a direct correlation between cell efficiency and charge recombination | Journal of Solid State Electrochemistry | 10.1007/s10008-014-2703-9 | https://doi.org/10.1007/s10008-014-2703-9 | 975-986 | 4 | 19 |
| 2019 | Mazzoni, Marina; Dagar, Janardan; Lai, Sarah; Centi, Sonia; Ratto, Fulvio; Pini, Roberto; Zani, Lorenzo | Transformed Double-Capped Gold Nanorods in Dye Co-Sensitized Solar Cells for Semitransparent Windows | Current Nanoscience | 10.2174/1573413714666180719122657 | 309-318 | 3 | 15 |
色素増感太陽電池(DSSC)におけるスクアレイン色素SQ2の応用と展望
DSSC(Dye-Sensitized Solar Cell)は、柔軟で軽量、製造コストも低い次世代太陽電池として注目されており、その性能向上の鍵を握るのが「光吸収色素」の選定です。なかでも、スクアレイン系有機色素(SQ dyes)の一種であるSQ2は、近赤外域に強い吸収を持つことから、近年特に注目を集めています。
SQ2の光吸収と電子注入特性
SQ2は、約750~800 nmの波長領域において強い吸収を示し、太陽光スペクトルとの親和性が高いことが特長です。分子軌道計算(DFT・TD-DFT)による解析では、SQ2が間接的な電子注入機構を持ち、他のスクアレイン色素と比較して短絡電流密度(Jsc)が低い一方、共増感によってその性能を補完できる可能性が示されています【Beilstein J. Nanotechnol. 2017】。
コセンシタイゼーション(共増感)による高効率化
SQ2は、他の有機色素や金属錯体色素(JH-1、Z907、OKT-1 など)との共増感(cosensitization)により、可視光から近赤外領域までの幅広い波長の光を効果的に吸収できます。たとえば、JH-1との共増感では変換効率6.31%、Z907との併用では**7.83%**と、SQ2単独時の1.39%を大きく上回る効率向上が確認されています【Org. Electron. 2018】。
光応答型・AI応用デバイスとしての展開
SQ2を利用したDSSCは、光電変換素子としてだけでなく、波長応答型の光シナプスデバイスとしても応用されています。波長のわずかな変化(10 nm)に対する高感度性を活かし、物理リザバーコンピューティングに応用した研究では、手書き文字認識精度87%を実現【Jpn. J. Appl. Phys. 2025】。AIセンシングやニューロモルフィックデバイスへの展開が期待されています。
ナノ構造との融合とプラズモン効果
さらに、SQ2と**金ナノロッド(GNRs)**を組み合わせることで、局在表面プラズモン共鳴(LSPR)効果による光吸収の強化が可能です。L1/SQ2とGNRsを用いた構成では、変換効率が23%向上。このような構造制御は、建材一体型の透明DSSCなどへの応用にも有効です【Sol. Energy Mater. Sol. Cells, 2021】。
フォトクロミック分子との連携による外部応答制御
光応答型材料(SPNO₂)とSQ2を組み合わせたDSSCでは、UV/可視光による変換効率の可逆的制御が可能であり、色と性能が連動する「スマートデバイス」的な機能も実現しています。エネルギー移動は主にFRET機構によって起こり、分子の配置と包接状態がその効率に大きく影響することが明らかになっています【Appl. Phys. Express, 2024】。
まとめ
SQ2は、従来の色素と比べて広い波長域での吸収性能と分子設計の柔軟性に優れ、DSSCのさらなる高効率化に貢献する重要な素材です。加えて、AI応用・フォトクロミック応答・ナノ構造とのハイブリッド化といった多彩な展開が可能であり、次世代の光応答型エネルギーデバイスの中核技術として発展が期待されます。
powered by Chat GPT

